Effective Term: Fall 2019
Status: In Review

COURSE OUTLINE FOR CREDIT COURSE

Basic Course Information

Courses numbered 1 - 49 are remedial or college preparatory courses which do not apply toward an A. A. Degree and are not intended for transfer. Courses numbered 50-99 apply toward an AA Degree, but are not intended for transfer. Courses numbered 100 and higher apply toward an AA Degree and/or are intended for transfer to a four-year college or university.

Discipline: GCIP **Course Number:** 168

Title: Digital Imaging with Drones

Units/Hours/Grading

Unit Value: 3.000

Lecture Hours Per Week:1.500Total Lecture Hours:24.000Lab Hours Per Week:4.500Total Lab Hours:72.000

Outside of Class Hours Total Outside of Class

Per Week: Hours:

Grading Basis: Grade/Pass/No Pass

Basic Skills Requirements: Appropriate Language and/or Computational Skills.

Requisites

To satisfy a prerequisite, the student must have earned a letter grade of A, B, C or P(Pass) in the prerequisite course, unless otherwise stated.

Prerequisite: None

Corequisite (Course required to be taken concurrently): None

Prerequisite: (Completion of, or concurrent enrollment in): None

Recommended Preparation: None

Limitation on Enrollment (e.g. Performance tryout or audition): None

Catalog Description

An introduction to using drones or unmanned vehicles for digital imaging. This hands-on course covers building, operating, and outfitting for still and video imaging and image capture.

Student Learning Outcomes

Upon successful completion of the course, the student will be able to:

- 1. Demonstrate successful drone operation and image capture.
- 2. Demonstrate successful mission planning, drone operation and image capture of mapping project within two hours of solar noon, and use photogrammetry software to post-process.

Specific Course Objectives

Upon successful completion of the course, the student will be able to:

- 1. Learn to properly operate a basic drone;
- 2. Understand the components, equipment, and technology to set-up a working drone;
- 3. Capture still or video image while operating a drone;
- 4. Work as a team of four individuals with each, in turn, learning the different operator rolls: camera operator, person operating the controls of the drone, visual observer, and remote pilot in command;
- 5. Operate and program a drone equipped with a variety of sensors including GPS, video and/or still photography:
- 6. Understand post-processing techniques to obtain the desired outcome.

Methods of Instruction

Methods of Instruction may include, but are not limited to, the following

- 1. Demonstration
- 2. Discussion
- 3. Group Projects/Activities
- 4. Guest Speakers
- 5. Lab
- 6. Lecture
- 7. Observation
- 8. Videos/Film

Content in Terms of Specific Body of Knowledge

- 1. Introduction
 - a. Types of drones
 - b. Ready to fly RTF vs Do it yourself DIY
 - c. Multi-rotor, hexicopter, fixed-wing, hybrids, octocopter, heavy-lifters
- 2. Equipment Setup
 - a. Safety
 - b. Motors
 - c. Propellers
 - d. Electronic speed controls
 - e. Batteries
 - f. Remote controls
 - g. Assembly
 - h. Repairing, replacing, service and maintenance
 - i. Normal procedures
 - j. Emergency Procedures
 - k. Regulations
- 3. Digital Imaging
 - a. Survey potential capture devices
 - b. Checklist
 - c. Flight operation and camera operation
 - d. First Person View systems
 - e. Flight Parameters
 - f. Flight times & wireless transmission
 - g. Limitations
 - h. Way finding

- 4. Post Processing and Delivery
 - a. Stabilize video
 - b. Panoramic photos
 - c. Remove lens distortion
 - d. Sharing images
 - e. Photogrammetry

Textbooks/Resources

Textbooks

1. Primary Source

Smith, Colin. The Photographer's Guide to Drones. 1st Rocky Nook, 2016.

2. McGriffy, David. Make: Drones. 1st Maker Media, Inc, 2016.

Other

1. Access to internet to view on-line instructional videos.

Assignments

Required Reading:

The Beginner's Guide to FPV (B&W) Alex Protogerellis (Author) ISBN-13: 978-1300820000 http://www.popularmechanics.com/technology/aviation/diy-flying/the-art-of-flying-your-very-own-drone-16068825 http://www.Travelbydrone.com http://www.dronestagr.am

Required Writing:

Digital imaging drone project proposal: contains rough ideas, sketches, shots that team members will create, required equipment, along with a description of the message to convey to target audience.

Critical Thinking:

Analyze the capabilities, limitations, and features of technology and equipment to capture the desired images based on client needs.

Outside Assignments:

Reading articles and journals to maintain currency in new and emerging technology. Sketching and designing shots to capture intended views.

Methods of Assessment

Methods of Assessment may include, but are not limited to, the following:

- 1. Class Work
- 2. Demonstration
- 3. Group Projects
- 4. Lab Activities
- 5. Class Participation
- 6. Projects
- 7. Simulation

Open Entry/Open Exit

No course is not offered as open entry/open exit

Repeatability

Course is Repeatable for Reasons other than a Deficient Grade? No

Contact Person

Mark J. Bealo

Generated on: 8/21/2018 1:33:12 AM